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Different routes to chaos via strange nonchaotic attractors in a quasiperiodically forced system
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This paper focuses attention on the strange nonchaotic attra@blas) of a quasiperiodically forced
dynamical system. Several routes, including the standard ones by which the strange nonchaotic attractors
appear, are shown to be realizable in the same model over a two-pardmet@omain of the system. In
particular, the transition through torus doubling to chaos via SNAs, torus breaking to chaos via SNAs and
period doubling bifurcations of the fractal torus are demonstrated with the aid of the two-parénegbbiase
diagram. More interestingly, in order to approach the strange nonchaotic attractor, the existence of several
bifurcations on the torus corresponding to the hitherto unreported phenomenon of torus bubbling are described.
Particularly, we point out the new routes to chaos, namély,two-frequency quasiperiodicitytorus
doubling—torus merging followed by the gradual fractalization of torus to chaos, &nhd two-
frequency quasiperiodicitytorus doubling-wrinkling—SNA—chaos-SNA—wrinkling—inverse torus
doubling—torus—torus bubbles followed by the onset of torus breaking to chaos via SNA or followed by the
onset of torus doubling route to chaos via SNAs. The existence of the strange nonchaotic attractor is confirmed
by calculating several characterizing quantities such as Lyapunov exponents, winding numbers, power spectral
measures, and dimensions. The mechanism behind the various bifurcations are also briefly discussed.
[S1063-651%98)00409-1

PACS numbd(s): 05.45+b

I. INTRODUCTION nonchaotic attracterthree-frequency quasiperiodicity
chaos; (ii) the route of Heagy and Hammé¢l4], two-
In nonlinear dynamical systems strange nonchaotic attradrequency quasiperiodicitytorus doubling-wrinkling—
tors (SNAs are considered as complicated structures instrange nonchaotic attractesshaosjiv) the route of Feudal
phase space, which is a property usually associated with chat al. [17], two-frequency quasiperiodicitywrinkling—
otic attractors. The pioneering work of Grebagiial. [1]  strange nonchaotic attracterghaos;(v) the route of Ya-
revealed that there are some possibilities of strange attractolsncinkaya and Lai[9], two-frequency quasiperiodicity
in certain types of dynamical systems that are not chaotic~strange nonchaotic attractqon-off intermittency type
These strange attractors are strange in the spirit that geadtractoj—chaos;(vi) the route of Venkatesan and Laksh-
metrically they are strangéractal dimensionalobjects in  manan[11], two-frequency quasiperiodicitytorus doubling
phase space. On the other hand, they would not exhibit sen~torus merging-wrinkling—strange nonchaotic attracter
sitivity to initial conditions (for example, Lyapunov expo- chaos;(vii) the route of Kapitaniak and Chud3], two-
nents are negatiyend hence are not chaotic. These strangdrequency quasiperiodicitystrange nonchaotic trajectories
nonchaotic attractors can arise in physically relevant situaen torus—chaos; and(viii) the route of Nishikawa and
tions such as a quasiperiodically forced pendull2n-4], Kaneko[21], two-frequency quasiperiodicity strange non-
guantum particles in quasiperiodic potentigdg, biological chaotic attractors:chaos.
oscillators [6], Duffing-type oscillators[7-10], velocity- Different mechanisms have been identified for some of
dependent oscillatofd 1], electronic circuit§12,13, and in  the above routes. In particular, it has been shown that the
certain map$14—-23. Also, these exotic attractors were con- birth of SNAs in the Heagy-Hammé14] route is due to the
firmed by an experiment consisting of a quasiperiodicallycollision between a period doubled torus and its unstable
forced, buckled magnetoelastic ribbf28], in analog simu- torus. Feudaét al.[17] explained in their route that the SNA
lations of a multistable potentigR4], and in a neon glow also appears a result of a collision of stable and unstable tori
discharge experimen5]. in a dense of set of points. However, Nishikawa and Kaneko
While the existence of strange nonchaotic attractors hak21] discussed in their route that the SNA emerges without
been firmly established, a question that remains interesting ian interaction of stable and unstable tori. Moreover, the loss
what the possible routes are by which they arise and ultiof transverse stability of the torus can also lead to the birth of
mately become chaotic and how these attractors are born in@NAs, as in the case of the Yalencinkaya-Lai ro{igd
system(mechanism Several routes have been identified in above. To our knowledge, for other routes mechanisms have
recent times and for a few of them typical mechanisms havaot yet been found. Also, most studies of strange nonchaotic
also been found for the creation of SNAs. The major routesttractors have focused on their characterization using the
by which the SNAs appear may be broadly classified as folspectral propertieg2,5], geometrical propertigs€], local di-
lows: vergence of trajectoriegl0], phase sensitivity and rational
(i) the route of Ding etal. [6], two-frequency bifurcations [15-18, and functional maps and invariant
quasiperiodicity-three-frequency quasiperiodicitystrange  curves[20-21.
nonchaotic attracterchaos;(ii) the route of Kapitaniak and In this paper we demonstrate the existence of at least five
Wojewoda [10], two-frequency quasiperiodicitystrange different routes to chaos via strange nonchaotic attractors in
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a single dynamical system, namely, a quasiperiodicallyeral properties as reported in REf1]. A mechanical model
forced velocity-dependent nonpolynomial oscillator systemdescribing the motion of a freely sliding particle of unit mass
over a two-parametef-e space. To start with, the birth of on a parabolic wire = yAx?) rotating with a constant an-
the strange nonchaotic attractors associated with two impogy|ar velocityQ (Q?=0%=—w3+gV\ andg is the accel-
tant routes, namelyj) torus breaking andi) torus doubling,  gration due to gravitycan be associated with a velocity-
has been studied in our model. In low dimensions, Bier an(gependent Lagrangidi27]
Bountis have shown that a dynamical system that undergoes
one or more period doublings need not complete the entire
infinite Feigenbaum cascade, but it may be possible to have . 9o 2o
only a finite number of period doublings, followed by, for E=3[(1+AX5)X"— wpX]. 1)
example, undoublings or other bifurcatiof8]. The possi-
bility of such a different remerging bifurcation phenomenon
of the torus doubling sequence in the quasiperiodicallyHere the overdot stands for a derivative with respect to time.
forced system has not yet been reported. Since the systemhe corresponding equation of motion is
that we consider possesses more than one control parameter
and remains invariant under the reflection symmetry, the re-
mergence is likely to occur as in the case of low-dimensional
systemg28,29. To confirm such a possibility, our numerical
studies show that in some regions of tfiee parameter
space, a torus doubled orbit emerges and remerges from a
single torus orbit at two different parameter valuesedb Whenwg>0, Eq.(2) can be integrated in terms of elliptic
form a torus bubble. Such a remerging bifurcation can retaréhtegrals. Interesting bifurcations and different routes to
the growth of the torus doubled trees and the development athaos occur in the above model when the system is acted
the associated universal route to chaos further. However, thQ)on by additional damping and external forc[dd]. In this
nature of remerging torus doubled trees or, more specificallyzase, Eq(2) gets modified to
torus bubbling ensures the existence of different routes for
the creation of SNAs when the full range of parameters is
taken into account. To illustrate these possibilities in our
system, we enumerate two hitherto unreported types of
routes as (i) two-frequency quasiperiodicitytorus
doubling—torus merging followed by the gradual
fractalization of torus to chaog1l] and (2) two- The familiar period doubling bifurcations, preceded by a
frequency quasiperiodicitytorus doubling» symmetry breaking bifurcation, intermittency, and antimono-
wrinkling—SNA—chaos-SNA—wrinkling —inverse torus tonicity, have been identified by us earlier in Riff1].
doubling—torus—torus bubbles followed by the onset of  Another interesting physical situation is the case in which
torus breaking to chaos via SNAs or followed by the onset othere is an additional parametric modulation in the angular
torus doubling route to chaos via strange nonchaotic attragrelocity
tor. Finally, we also show the occurrence of period doubling
bifurcations of the destroyed torustrange nonchaotic at-
tracton in our model. _

This paper is organized as follows. Section Il describes 01=00(1+ € coswyt),
the system and the salient features of its dynamics. Section
[l describes some of the characteristic quantities of strange ) 5 .
nonchaotic attractors in comparison with chaotic attractor$© that we can replaceg=gyA—Qg in Egs. (1)-(3)
such as Lyapunov exponents, winding number, power spedy gVA—Q2=w3—Qf[2€ coswt+0.5e*(1+cos w,t)].
tral analysis, and dimensions. These quantities have beéfhen the equation of motion become®e, for example, p.
used to distinguish between quasiperiodic, strange nonch&51 in Ref.[27] and also Ref[11])
otic, and chaotic attractors. The birth of strange nonchaotic
attractors from the transitions of the two-frequency quasi-
periodic attractors is observed in the five different routes
mentioned in Sec. IV. The first one is that of torus breaking
to chaos via SNAs. The second one is through torus bubbling
followed by the gradual fractalization to chaos. The third
route is the transition from torus doubling to chaos via
strange nonchaotic attractor. The next one is the possibility ]
of torus doubling to chaos via SNAs followed by the in- Wheree is a small parameter.
versely advancing type of torus. The last one we observe is We have already noted an interesting quasiperiodic route
the period doubling bifurcation of the destroyed torus. Fi-to chaos, namely, two-frequency quasiperiodieitprus

(14 M) X+ AxX%+ wix=0. 2

(14 AX%) X+ AxX%+ w3x+ ax=f coswt. ©)

(14 AX3)X+AXXP+ wix— QF[ 2€ cosw)t

+0.56%(1+c0os 20,t) [x+ ax="f COS wet, (4

nally, in Sec. V we summarize our results. doubling—torus merging-wrinkling—strange nonchaotic
attractor—chaos in the syster@#) in Ref.[11]. In this paper
Il. QUASIPERIODICALLY FORCED we make a detailed study of this and many other quasiperi-
VELOCITY- DEPENDENT SYSTEM odic routes to chaos that can occur in this model in a range of

Let us consider briefly the dynamics of a damped and -€ parametervalues and compare them. For our analysis we
driven rotating parabola system and discuss some of its gefiewrite the systent4) as
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iy, - —Axy?—{wi—Q3[2€ cos ¢+0.5¢%(1+cos 2p)|}x— ay+f cos 6

(1+AX?)
5)
b=wp. 0= we.
|
We note that the systerfb) remains invariant under the [ m
reflection symmetry X,y,f)—(—x,—y,—f) [or, equiva- W= wpt — e, (7)

lently, Eq. (4) under the transformationx(f)—(—x,—f)].

In analogy to low-dimensional systems involving more thanwherel, m, andn are integers. Combining the winding num-

one control parameter when period bubbles o¢@, one ber and the Lyapunov exponents, we can distinguish the

may expect a remerging 9f torus doubling sequences to OCCLértrange nonchaotic attractors from the other nonchaotic at-
in this model, which we indeed show to be true in the fol-

lowi tractors as noted in Table I.
owing.

C. Power spectrum analysis
IIl. CHARACTERIZATION OF THE QUASIPERIODIC, . . .
STRANGE NONCHAOTIC. AND CHAOTIC To quantify the changes in the power spectrightained
ATTRACTORS using the fast Fourier transform techniguse can compute

the so-called spectral distribution functidi(o), defined to

There are several quantities to characterize the attractorbe the number of peaks in the Fourier amplitude spectrum
which are useful to distinguish strange nonchaotic from chatarger than some value, say, Scaling relations have been
otic and quasiperiodic attractors. We briefly review somepredicted forN(o) in the case of two- and three-frequency
that we will use in our study. quasiperiodic and strange nonchaotic attractors. These scal-
ing relations areN(o)~In 1/, N(¢)~In®o, and N(o)
~o P, respectively, corresponding to two- and three-
frequency quasiperiodic and strange nonchaotic attractors. In

For the systen(5), there are two Lyapunov exponents that the studies of Romeiras and Qf, the power law exponent
are trivial in the sense that they are identically zero by virtugyas found empirically to lie within the range<ig<2 for
of the two excitation frequencies. Let the Lyapunov expo-the strange nonchaotic attractor. Thus the above characteris-
nents\; be ordered by their values;=X\,=N3=\;. We  tics allow us to distinguish the strange nonchaotic attractor
then have the following possibilitie$t) two-frequency qua-  from other nonchaotic attractors as seen in Table I.
siperiodic attractord ;=A,=0>\3,\,; (ii) three-frequency
quasiperiodic attractora.;=A,=A3=0>A,; (iii) strange
chaotic attractors, at least>0; and(iv) strange nonchaotic

attractors, the same as two-frequency quasiperiodic attrac- 10 quantify geometric properties of attractors, several
tors. methods have been used to compute the dimension of the

attractors. Among them, what we have used is the correlation
dimension(introduced by Grassberger and Procad@é)),

o _ _ _ which may be computed from the correlation functio(R)
The winding number for the orbit of E@5) is defined by  defined as

the limit

A. Lyapunov exponents

D. Dimensions

B. Winding number

1 N
(M] © C(R)= lim le21H(R—|xi—xj|) ,
I} N— o0 L=

. where x; and x; are points on the attractoH(y) is the
where &,x)=(r cosa,r sina). For the two-frequency qua- Heaviside function1 if y=0 and 0 ify<0), andN is the
siperiodic attractors, the winding number satisfies number of points randomly chosen from the entire data set.

TABLE |. Characteristics of attractors.

Types of attractors Winding number Lyapunov exponents Power law relations Dimensions
three-frequency m | 2 .

quasiperiodic W ot o N<OA,=A3=A,=0 N(o)=In“co integers
two-frequency m | L 1 .

quasiperiodic W= —wp+ —oe A1 Ap<OA3=A4=0 N(o)=In= integers
strange nonchaotic m | N(o)=0c"F

N, Ao<OA3=X\,=0 fractals

attractor W# S wpt S we 1<B<?2
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FIG. 2. Projection of the two-frequency quasiperiodic attractors
of Eq. (5) for f=0.302, with the Poincarplot with ¢ mod 2 in
0,03 . . . . . the (X,¢) plane: (@) two-frequency quasiperiodic attractor at
03 0.31 0.2 0.33 0-34 035 036 €=0.030, (b) torus wrinkled attractor fore=0.0405, (c) strange

f nonchaotic attractor fore=0.0419, (d) chaotic attractor for
€=0.042. The other parameters an§=0.25,\=0.5, a=0.2, wp
=1.0,03=6.7, andw,=0.991.

0.032

FIG. 1. Phase diagram of the two-paramdter space exhibited
by the systent5). Regions of different attractors are denoted &@s 1
two-frequency quasiperiodicity attractorT2torus doubled attrac-
tor; W1, wrinkled attractor of period on&y2, wrinkled attractor of
period two; S strange nonchaotic attracto82, period doubled
strange nonchaotic attractor; afid chaotic attractor.

When the value ofe exceeds a certain critical value for a
fixed low f, a transition from two-frequency quasiperiodic
(1T) to chaotic attractor@) via a strange nonchaotic attrac-
tor (S) occurs on increasing. For example, we fix the

The Heaviside function simply counts the number of pointsStréngth of ‘the external forcing parameter value fas

x; within the radiusR andC(R) gives the average fraction of = 0-302 and vary the modulation parametetor e=0.03,
points. Now the correlation dimension is defined by theFi9- 2@ of the attractor has smooth branches and this indi-

variations ofC(R) with R: cates that t_he system is in a two-fre_quency guasiperiodic
state. Ase increases, the branches in Fig(bR start to
C(R)~RY as R—0. wrinkle (W1). As € increases further, the attractor becomes

extremely wrinkled and has several sharp bends. The sharp
Therefore, the correlation dimensidris the slope of a graph bends appear to become actual discontinuities=e2.0419
of In C(R) versus InR. Once one obtains the dimensions of and ultimately result in a fractal phenomenon. Such a phe-
the attractors, it will be easy to quantify strange properties ohomenon is essentially the result of the collision of stable

the attractors as seen in Table I. and unstable tori in a dense set of points, as was shown by
Feudalet al. in their route to chaos via SNA47]. At such
IV. DIFFERENT ROUTES TO CHAOS VIA STRANGE values, the nature of the attractor is strapfig. 2(c)] even
NONCHAOTIC ATTRACTORS though the largest Lyapunov exponent in Fig. 3 remains

negative. For this attractor, the correlation dimension is 1.33,
Now we consider the combined effect of both the externalyhile the Fourier amplitude scaling constants 1.54. The
and parametric forcings in E¢5). To be concrete, we con- winding numberW does not satisfy the relatiof?) for this
sider the dynamics of Eq5) and numerically integrate it attractor. Hence these studies confirm further that the attrac-
using the fourth-order Runge-Kutta algorithm with adaptive
step size with the values of the parameters fixedwét

=0.25,1=0.5, a=0.2, 02=6.7, wp=1.0, andw=0.991. 0.04
Various characteristic quantities such as the winding num- 0.02
bers, Lyapunov exponents, power spectral measures, and di- 0

mensions, as discussed in the preceding section, have been ~0.02
used to distinguish quasiperiodic, strange nonchaotic, and '
chaotic attractors. Further, to identify the different attractors, 7\“0'05'_ 03 0.035 0.04 0.045
the dynamical transitions are traced out by two scanning pro- 0.02

cedures{i) varyingf at a fixede and(ii) varying € at a fixed : (b)
f. The resulting phase diagram in thes parameter space is
shown in Fig. 1. The various features indicated in the phase OM
diagram are summarized and the dynamical transitions are

elucidated in the following.

-0.02
A. Torus breaking bifurcations and the birth of strange 0.04 0.041 0.042
nonchaotic attractors €
For low f and low e values, the system exhibits two-  FIG. 3. Largest Lyapunov exponeRt,, Vs € corresponding to

frequency quasiperiodic oscillations denoted Ayif Fig. 1.  Fig. 2.
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-2 0 2
1 X
(b) 8
>0 FIG. 6. Projection of the two-frequency quasiperiodic attractors
of Eq. (5) for f=0.32, with the Poincarplot with ¢ mod 21 in the
(x,¢) plane:(a) merged attractor foe=0.0353,(b) wrinkled attrac-

-1 tor for e=0.0399,(c) strange nonchaotic attractor fer0.041, and
-2 0 2 (d) chaotic attractor fore=0.0413. The other parameters ané
X =0.25,\=0.5, @=0.2, w,= 1.0,03=6.7, andw,=0.991.
FIG. 4. Projection of the two-frequency quasiperiodic attractors
of Eq. (5) for f=0.302, with the Poincarsurface of section in the the attractor undergoes a torus doubling bifurcafibigs.
(x,y) plane:(a) torus ate=0.03 and(b) torus doubled attractor at 4(b) and 3b)]. The corresponding period doubled torus at-
€=0.0317. The other parameters asg=0.25,A=0.5,2=0.2, w,  tractor is denoted asT2in Fig. 1. We note from Figs. 4 and
=1.0,03=6.7, andw,=0.991. 5 that the two strands in the(¢) projection become four
strands when torus doubling bifurcation occurs. When we

tor shown in Fig. 2) is strange nonchaotic. Asincreases Compute$ mod 4 instead of Zr during integration, we no-
further, an attractor visibly similar to Fig.(® appeardsee fice from Fig. 5 that the two bifurcated strands of length 2
Fig. 2(d) for f =0.042]. However, it has a positive Lyapunov @re actually a single strand of lengtir4As a result, it can be

exponent and hence it corresponds to a chaotic attractor. concluded that the torus doubling is nonetheless a length
doubling bifurcation. Further, it may be noted that this bifur-

cation is geometrically very similar to that of the period dou-
bling bifurcation in three-dimensional flows. One then ex-
pects that a% is increased further the doubled attractor has
1. Torus bubbling to continue the doubling sequence as in the case of a period

On increasing the forcing parametefurther, 0.305< f _doubling phenomenon. Instead, in the present case, inFerest—
< 0.325, the fascinating phenomenon of torus bubble ap'—ngly' the strands of.the length doubled attractor beg|.n o
pears within a range of values ef Within this range of, on merge into th"f‘t of asingle attrgctora*fo.0353, as showr_1 n
increasing the value of along the same line, the onset of Fig. 6(a)_, I_eadmg to the_ formation of_atorus pubkﬁkge Fig.
chaos is realized via a strange nonchaotic attractor. To b@' reminiscent O.f per|oq bubbles in low-dimensional sys-
more specific, the parametkis fixed at 0.32 and is varied. “?F“S[Z&ZQ- On increasing the yalu_e qffurther, the tran-
For €=0.03, the attractor is a two-frequency quasiperiodicSition from two-frequency quasiperiodicity to chaos via a

attractorFigs. 4a) and §a)]. As e s increased te=0.0317, s;range_nonchao'gic attractor takes place due to torus breaking
Figs. 42) §a] € bifurcations as discussed in Sec. IV[8ee Figs. &)—6(d)

B. Remerging torus doubling bifurcations: The torus bubble
and its consequences

and 7.
2 @ 2 © It has been argued in the case of period bubbling in low-
dimensional system®8] that the cause of formation of the
0 0 period bubbles is essentially due to the presence of a reflec-
tion symmetry combined with more than one control param-
x 20 2 4 6 8 o 5 10 eter present in the system. It appears that a similar argument
2 o 2 @ holds for the case of higher dimensions for the formation of
torus bubbles.
0 [
\ 2. Formation of multibubbles
o 2 4 6 8 o 5 10 As the forcing parametefris increased further in the re-
¢ ¢ gion 0.325<f< 0.332, the evolution of the attractor under-

FIG. 5. Projection of the two-frequency quasiperiodic attractorsd0€S the following transition to chaos, wherein more than
of Eq. (5) for f=0.302, with the Poincarsurface of section with ©One bubble is formed on increasing the value eoftwo-
#mod 27 in the (x,$) plane:(a) two-frequency quasiperiodic at- frequency  quasiperiodicitytorus — doubling-wrinkling
tractor fore=0.03, (b) torus doubled attractor a=0.0317, andc)  —inverse torus doublingdoubled torus—merged torus-
and (d) same as(a) and (b) except$ mod 4= during integration.  torus bubble-merged torus-wrinkling—SNA— chaos. To
The other parameters aegh=0.25,A=0.5, @=0.2, w,=1.0, illustrate this possibility, let us fix the forcing parameter
=6.7, andw,=0.991. value asf=0.328 and vary the value. Fore=0.03 the at-
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FIG. 7. Largest Lyapunov exponeRt,,y Vs € corresponding to
Figs. 4—6. FIG. 8. Projection of the two-frequency quasiperiodic attractors

of Eq. (5) for f=0.337, with the Poincarglot with ¢» mod 2 in

. S L the (x,¢) plane:(a) two-frequency quasiperiodic torus at0.03,
tractor is two-frequency quasiperiodic. Asis increased to (b) doubled torus attractor for=0.0312,(c) wrinkled doubled at-

6.:0'0313' the attractor undergogs a torus doubling blfurca'fractorf0r¢s=0.0335,(d) strange nonchaotic attractor fex0.0342,
tion. Thg doubled attractor beQ'”S t.o wrinkle when the (e) strange nonchaotic attractor fer=0.0345,(f) wrinkled attractor
value is increased. However, this wrinkled attractor appearg,, €=0.03461(g) doubled torus attractor foe=0.0347, and(h)
to become again a torus doubled attractor instead of aRnerged attractor foe=0.036. The other parameters asd=0.25,
proaching the SNA while the value is increased further. \—qs @=0.2, 0,=1.0,02=6.7, andw,=0.991.

This doubled attractor merges into a single torus through

inverse bifurcation on increasing the valueeofThe merged |, er_dimensional systems, the period doubling occurs in an
torus again forms a torus bubble and then finally transits G, inite sequence until the accumulation point is reached, be-
chaos via wrinkling and SNA's as the value of thés in- 4 \which chaotic behavior appears. However, with tori, in
creaseq furthgr. . the present case, the truncation of the torus doubling begins
On increasing the forcing parametefurther, 0.332<f when the two strands become extremely wrinkla2(
< 0.335, the transition from two-frequency quasip_eriodicitywhen thee value is increased, as shown in Figc8 These
to chaos via SNAs takes place through the following routegiangs lose their continuity as well as smoothness and be-
wherein more than two bubbles are formedeasicreases:  .qme strange at=0.0339. At such values, the attractor pos-
two-frequency quasiperiodicitytorus doubling-wrinkling  gesses a geometrically strange property but does not obey the
—inverse torus doublingmerged torus:torus bubble-  gengitivity to the initial conditiongthe maximal Lyapunov
torus—torus bubble-torus—wrinkling— SNA—chaos. exponent is negative as seen in Fig.a®d so it is called a
strange nonchaotic attractpFig. 8(d)]. The emergence of
such a SNA is due to the collision of stable doubled torus

C. Strange nonchaotic and chaotic attractors within and )
and its unstable parent as was shown by Heagy and Hammel

outside the main torus bubble

On increasingf further, f>0.335, inside the main torus

bubble we observe interesting possibilities of strange non- 0.04
chaotic and chaotic attractors via wrinkling asncreases.
. ) o P . 0.02
Then two interesting possibilities arise inside the main
bubble. The dynamics outside the main bubble more or less 0
follows the previous case in Sec. lll B. The details are as -0.02
follows. -0.04
A 003 0.035 0.04 0.045
1. SNA within the main torus bubble 0.02
In a narrow region of, 0.335<f< 0.339, the SNA un- ®)
dergoes an inverse bifurcation scheme leading to a two- :
frequency quasiperiodic attractor asncreases through the 0
following route: two-frequency quasiperiodicitytorus /\\
doubling—wrinkling— SNA—wrinkling—inverse torus dou- _0.02
bling (doubled torus—merged torus. For example, the forc- "0.03 0.032 0.034 0.036
ing parameterf is fixed at f=0.337 ande is varied. For €
€=0.03 the attractor is a two-frequency quasiperiodic one ‘
[Fig. 8@)]. As eis increased t@=0.031, the attractor under- FIG. 9. Largest Lyapunov exponenf,,x Vs € corresponding to

goes a torus doubling bifurcatidas seen in Fig. ®]. In  Fig. 8.
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FIG. 10. Projection of the two-frequency quasiperiodic attrac-  F!G- 11. Largest Lyapunov exponey,, vs e corresponding to
tors of Eq.(5) for f=0.342, with the Poincarplot with ¢ mod 27 Fig. 10.
in the (x,¢) plane: (a) two-frequency quasiperiodic torus at
€=0.03, (b) doubled torus attractor foe=0.0309, (c) wrinkled  Vvalues, period doubling bifurcation of the SNA is also no-
doubled attractor foe=0.033,(d) strange nonchaotic attractor for ticed, which will be discussed in detail in the following sub-
€=0.0337,(e) chaotic attractor foe=0.034,(f) strange nonchaotic section. On increasing the value ofurther to 0.034, we find
attractor fore=0.0345,(g) doubled torus attractor foe=0.0347, the emergence of a chaotic attrac{dtig. 10e)], which,
and (h) merged attractor foe=0.036. The other parameters are though visibly similar to the nonchaotic strange attractor in
©§=0.25,\=0.5, 2=0.2, 0,=1.0,35=6.7, andw.=0.991. Fig. 10d), has a positive Lyapunov exponefsee Fig. 11

The chaotic attractor again becomes a SNA wleis in-

[14] in their route. Interestingly, the SNfFig. 8(e)], instead  creased furthefFig. 10f)]. As the value ofe is still in-
of approaching a chaotic attractor as the value ioicreases, creased, the SNA becomes a torus doubled attrd&toy.
becomes wrinkledFig. 8(f)] and then torus doubled attractor 1((g)] via wrinkling. This doubled attractor then merges into
[Fig. 8g)]. The doubled attractor again merges into a singlea single torugFig. 10h)] when the valuee is continuously

torus[Fig. 8(h)] on increasing the value af further. increased.
2. Chaotic attractor within the main torus bubble 3. Dynamics outside the main torus bubble
In a rather large region of, f> 0.339, the SNA as Two additional interesting transitions exist outside the

formed above transits into a chaotic attractor on increasingnain torus bubble, namelyi) torus breaking to chaos via a

the value ofe further through the following route: two- SNA and(ii) torus doubling to chaos via a SNA. The details
frequency quasiperiodicitytorus doubling-wrinkling— are as follows.

SNA—chaos»SNA—wrinkling—inverse torus doubling In a narrow region of, 0.335<f< 0.345, the transition
(doubled torus—merged torus. To illustrate this possibility, from two-frequency quasiperiodicity to chaos via a SNA
let us choose the paramefer 0.342 and vary the value @ takes place outside the main bubble through the following
For €=0.03 the attractor is a two-frequency quasiperiodicroute ase increases beyond=0.0361: torus-torus bubble
attractor[Fig. 10@]. As € is increased toe=0.0309, the _torus—torus  bubblestorus—wrinkling—SNA—chaos.
attractor undergoes a torus doubling bifurcatiéig. 10b)].  However, in the region 0.345f <0.352, one also observes a

As e is increased further the strands of the doubled attractofransition from a wrinkled two torusvf2) to a wrinkled one
begin to wrinkle 2), as shown in Fig. 1@). The forma-  torus W1).

tion of sharp bends in the strand of the attractor is now clear A further increase of the value dfbeyond 0.352, fore

ase is increased further. These bends tend to become actughjyes greater than 0.0362, introduces yet another kind of
discontinuities ate=0.0337, as shown in Fig. 1@. The transition beyond the main bubble as tortsrus doubling
emergence of such discontinuities on the torus is due to the»wrinkling—ﬂnverse torus doubling-merged torus» torus

collision of a stable doubled torus and its unstable “parent,” doubling—wrinkling—strange nonchaotic attracterchaos.
which is similar to the one found by Heagy and Hammel

[14]. At such values, the attractor loses smoothness and be-
comes ‘“‘strange.” The attractor shown in Fig.(@Dis noth-

ing but strange nonchaotic as the maximum Lyapunov expo-
nent turns out to ben=-0.012 13 (Fig. 11). Further the In the previous subsections, we have seen that the period
correlation dimension is 1.49, the scaling constam 1.38,  doubling bifurcation of a torus has been truncated by the
and the winding numbew does not satisfy the relatiofY) destruction of the torus leading to the emergence of a strange
for this attractor. Hence these characteristic studies confirmonchaotic attractor in certain regions of thee parameter
further that the attractor shown in Fig. @) is strange but space. However, we observe in the present system that in
nonchaotic. On increasingfurther, for a narrow range of ~ some cross sections of thiee parameter space, the period

D. Period doubling bifurcations of destroyed torus(SNA)
within the main torus bubble
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2 @ 2 ® It was found that the first two routes can be realized in the
following ways: (i) two-frequency quasiperiodicity torus

0 0 doubling—wrinkling—strange nonchaotic attracteschaos,
where the birth of the SNA is due to the collision of stable
S SR — 2T s 4 & 8 doubled orbit and its unstable parent tofid], and(ii) two-
frequency quasiperiodicitywrinkling—strange nonchaotic
@ attractor-chaos, where the emergence of the SNA is essen-
tially the result of interaction of stable and unstable torus in
a dense set of poinfd7].

More interestingly, we have pointed out the possibility of
the torus bubbling. That is, torus doubling bifurcations in
dynamical systems can, under suitable circumstances, form

FIG. 12. Projection of the two-frequency quasiperiodic attrac-finite sequence that “merge” in some cross sections of the
tors of Eq.(5) for f=0.345, with the Poincarplot with ¢ mod 2r  Parameters space, inhibiting the onset of torus doubling route
in the (x,$) plane: (8 two-frequency quasiperiodic torus at tO chaos. Such remerging bifurcations having a finite number
€=0.03, (b) doubled torus attractor for=0.0305,(c) strange non-  Of “bubbles” occur only within some range of the param-
chaotic attractor foe=0.0334, andd) doubled strange nonchaotic €ters values. An important consequence of such remerging is
attractor fore=0.0337. The other parameters arg=0.25,\=0.5,  that the orbits become again stable and relatively large re-
a=0.2, wp=1.0,Q§:6.7, andw,=0.991. gions reappear around them, where the motion is regular and

. . . . _ . predictable. To illustrate such merging torus doubling bifur-
doubling bifurcation phenomenon still persists in the de-ations. in our present study, we have shown two more

stroyed torus, even though the actual doubling sequence of tes: (a) two-frequency quasiperiodicitytorus doubling
the torus has been terminated. Such a route has also beety,rys merging followed by the gradual fractalization of
observed recently in coupled Duffing oscillat¢®y and in  (5rys to chaos via a SNA andb) two-frequency
certain mapg22]. The doubling of a destroyed torus has quasiperiodicity-torus doubling-wrinkling—SNA—
been observed in the present model in a rather long range %aos—>SNA—>wrinkling—>inverse torus doublingtorus—

f, 0.338<f< 0.358 and for a narrow range efvalues de-  torys pubbles followed by the onset of torus breaking to
noted byS2 in Fig. 1. For example, let us chooe0.345  ¢haos via a SNA or followed by the onset of torus doubling
and vary the value o&. For =0.03, the attractor is a two- yoyte to chaos via a SNA. From these routes it can be con-
frequency quasiperiodic tory&ig. 12a)]. As e is increased  ¢jyded that, prior to standard routes for the transition to a
to €=0.0305, the system undergoes torus doubling bifurcastrange nonchaotic attractor, the possibilities of several bifur-
tions [Fig. 12(_b)]. On increasing the value af further, the  c4iions on the torus can be realized. Finally, the period dou-
attractor begins to wrinkle and finally ends up with fractal yjing pifurcations of the destroyed torus have also been ob-
nature(a SNA) [Fig. 12c)]. On increasing the value of  seryed in our model in a narrow region of thes parameter
further, the fractal torus undergoes doubling bifurcafieiy. space: two-frequency quasiperiodicitgorus doubling-

12(d)]. If the parametek is still increased, the doubled frac- wrinkling—destroyed torus-period doubling of destroyed
tal torus merges into a single fractal torus and finally tra”5it§orus—>merged destroyed toruschaos.

into the chaotic attractor.
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